
The Solexa Pipeline

Nava Whiteford

April 11, 2008

Abstract

Contents

1 Overview 2

2 Firecrest 3

2.1 Firecrest runs in 2 passes . 3
2.2 Image Analysis . 3

2.2.1 Noise estimation . 6
2.2.2 Object Identification . 8

3 Bustard 11

3.1 Crosstalk matrix correction . 11
3.2 Phasing correction . 11
3.3 Basecalling . 11

4 Gerald 12

4.1 Purity and Chastity . 12

A File Descriptions 14

A.1 Initial run folder . 14
A.1.1 .params file . 14

A.2 Pipefile files, before run . 14
A.3 Firecrest . 15
A.4 Bustard . 15
A.5 Gerald . 15

1

Chapter 1

Overview

OVERVIEW OF PIPELINE GOES HERE...

2

Chapter 2

Firecrest

By default Firecrest operates on a per tile basis, the main Firecrest binary is run image analysis.
It reads an xml list of absolute paths to tile images. These are created by Goat and stored in the
Data/CX-CC Firecrest1.9.2 DD-MM-YYYY username/Firecrest/LXX/s X XXXX XX jnl.xml files. The main
Firecrest loop is shown in figure 2.1. The main loop is largely straightforward. Firecrest loops over all
cycles (typically 36) and then performs image analysis on each of the four images for this cycle. The
image analysis identifies clusters, and the intensity and noise values associated with these. In the first
cycle cluster reference positions are stored (later cycles are aligned against these positions).

2.1 Firecrest runs in 2 passes

When Firecrest is launched by the Makefiles in the runfolder it is called twice per tile. The first pass
runs a full image analysis on every 50th tile. It’s “useful” output is an offsets file. This file specifies
transformations (shift and scaling) that are applied to image data in the second pass.

The offsets file is created from the xml output of the first firecrest pass. These are stored in (Data/CX-CC Firerest1.9.2

When the first Firecrest pass has finished parse offset scaling.py (a part of Goat), is called by the
Makefile. This strips the scaling/offset data from the xml files are stores them in the Offsets directory
on a per lane basis.

update offsets.py is then called. This file creates default offsets.txt which contains transfor-
mations which will be globally applied to identified clusters on the next Firecrest pass. It creates this
offsets file as an average of the individual tile/image offsets while attempting to maintain a small standard
deviation (NOTE: need to add more details here). Firecrest can also optionally use a precalculated per
device offsets file (NOTE: also more details here).

2.2 Image Analysis

The bulk of the image analysis takes place in the ImageData object (stored in ImageProcess.cpp/h).
Stages of the image analysis process are illustrated in figure 2.2. To illustrate the image analysis we’ll be
looking at the processing of an example image. The original input image is shown in figure 2.3.

The first stage of processing applies a Mexican Hat filter to the image. (NOTE: I guess attenuating
low and high frequencies makes the image smoother and the edges stronger? Need to add more details.)

3

Figure 2.1: The Firecrest main loop

4

Figure 2.2: Image analysis stages in Firecrest

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 11000

 450

 460

 470

 480

 490

 500

 510

 520

 530

 540

 550

 450 460 470 480 490 500 510 520 530 540 550

Figure 2.3: An example input image and magnified selection.

5

-3000

-2000

-1000

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 450

 460

 470

 480

 490

 500

 510

 520

 530

 540

 550

 450 460 470 480 490 500 510 520 530 540 550

Figure 2.4: Image after Mexican hat filter.

2.2.1 Noise estimation

For noise estimation the image is broken in to a number of regions, for each region a single noise value is
calculated. The image is broken in the smallest even number of regions greater than 125 pixels square.
This value has been selected in order to provide enough samples to calculate noise (NOTE: from Klaus).

For each region an initial histogram with fine binning is created. The inital bin width is calculated
as: w = σ

7×50
, where the standard deviation is calculated from the filtered image (in this region). That is,

according the code comments, ten times finer than any interval, with an additional factor of 5 to account
for the overestimation of noise dispersion in the original image. This value is rounded to the nearest power
of 10. Seven has been selected heuristically based on the sample size. The minimum value stored in the
histogram is min = (µ−2.5×σ

w
− 0.5)×w, where the average is value calculated from the filter image in this

region. The number of bins is calculated as 5×σ
w

.
The histogram is then smoothed in three passes, or until smoothing no longer results in a tighter

standard deviation. Smoothing is by “mean filtering”, this iterates over the histogram subtracting the
value windowsize (of half the size of the s.d.) less than the current position and adding that windowsize
greater.

A new histogram is then created based on these refined values. The binning width here is σ
7

(where
σ is the new sd). The minimum value to store in the histogram is calculated as µ − 2 × σ − 0.5w. This
histogram is clipped at such that only values v +

√
v > m −

√
m × e−0.5 (where v is the value at in the

histogram, and m is the maximum value in the histogram).
If after clipping there are less than 5 bins, and additional bin is added to each slide of the histogram.

If there are still less than 5 bins noise estimation fails. A gaussian is fitted to the resulting histogram.
The average from the gaussian is used to populate the “background” image in this region, the standard
deviation to population the “noise” image. Example background and noise images can been seen in
figures 2.6 and 2.5.

6

 160

 170

 180

 190

 200

 210

 220

 230

 240

 250

 450

 460

 470

 480

 490

 500

 510

 520

 530

 540

 550

 450 460 470 480 490 500 510 520 530 540 550

Figure 2.5: Noise image.

-290

-280

-270

-260

-250

-240

-230

-220

-210

-200

 450

 460

 470

 480

 490

 500

 510

 520

 530

 540

 550

 450 460 470 480 490 500 510 520 530 540 550

Figure 2.6: Background image.

7

-3000

-2000

-1000

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 450

 460

 470

 480

 490

 500

 510

 520

 530

 540

 550

 450 460 470 480 490 500 510 520 530 540 550

Figure 2.7: Image with background subtracted.

2.2.2 Object Identification

The background image (calculated during noise estimation) is subtracted from the filtered image (an
example is shown in figure 2.7). This image is then thresholded. Thresholding retains pixels whose value
is greater than a “factor” multiplied by the associated pixel in the noise image. The factor currently used
is 4. A thresholded image is shown in figure 2.8.

After thresholding object detection takes place. The algorithm is reasonably straightforward. Every
pixel in the image is itterated over when a pixel above the threshold in encountered a boundary is created.
The boundary is created by walking all adjacent above threshold pixels clockwise. The area covered by
this newly identified cluster is also calculated, and the pixels in this position on the original image unset
(to avoid detecting this cluster again). During this process the maximum pixel intensity in this cluster is
also found. It is the maximum pixel intensity that is passed to the base caller (rather than a function of
all the pixels in this cluster). Initially identified clusters are shown in figure 2.9.

Deblending

If an objects area is greater than 2f 2 where f is an input parameter and usually set at 2.7 the object is
split. However if objects are too large (greater than 16f 2) it is simply ignored (i.e. it is kept, there is a
TODO suggesting it should be deleted in the source). I’m not sure how this is squared with the “many”
clusters that are usually identified in blobs.

Local Backgrond Compensation

Once final objects have been identified local background can be compensated for. This is calculated in the
function get background dispersion and subtracted from the cluster intensity in integrate objects.
Local background compensation takes a 10x10 window around the pixel with maximum intensity in a
cluster. All pixels that are not part of a cluster are extracted and sorted.

An iterative process then occurs such that (to quote the source): “The background is given by the
median of the pixel distribution, and the noise is chosen such that 68% of the pixels lie within a 2-
sigma interval. The procedure is iterated and each time 3-sigma outliers are removed to avoid large

8

-1000

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 450

 460

 470

 480

 490

 500

 510

 520

 530

 540

 550

 450 460 470 480 490 500 510 520 530 540 550

Figure 2.8: Image after thresholding.

 0

 200

 400

 600

 800

 1000

 1200

 450

 460

 470

 480

 490

 500

 510

 520

 530

 540

 550

 450 460 470 480 490 500 510 520 530 540 550

Figure 2.9: Image after object identification, gray pixel indicate the maximum pixel identified in this
object.

9

 0

 200

 400

 600

 800

 1000

 1200

 450

 460

 470

 480

 490

 500

 510

 520

 530

 540

 550

 450 460 470 480 490 500 510 520 530 540 550

Figure 2.10: Image after object deblending, gray pixels indicate the maximum pixel in this object. Split
objects no longer have boundaries, and so only the maximum pixel is shown.

contaminations by residual low-level signal.”
The background is therefore the median pixel, noise is calculated as: c

2
− 0.34c − c

2
+ 0.34c where c is

the number of pixels. This process occurs iteratively removing maximum pixels if they are greater than
background = 3×noise. This iteration terminates if less than 2 pixels are removed or less than 20 pixels
remain.

10

Chapter 3

Bustard

Bustard is the Illumina basecaller, the base call is simply the maximum intensity after Crosstalk and
Phasing corrections have been applied. Quality score calculation is more involved (NOTE: add more)

3.1 Crosstalk matrix correction

Crosstalk correct is perform as described for capillary sequence by Li and Speed [1].

3.2 Phasing correction

Phasing is a term used to describe the signal contribution of bases from the previous and next cycles.
Because the labelled base is not always successfully incorporated or two bases are incorporated instead of
one this “signal leakage” sometimes occurs.

Phasing and prephasing are calculated as follows:

phasingb = average of previous cycle where b is max - average of previous cycle where b is NOT max

prephasingb = average of next cycle where b is max - average of next cycle where b is NOT max

Where b is a given base. Phasing and prephasing are averaged over the run and used to derive a
correction matrix. (NOTE: add detail and check)

3.3 Basecalling

(NOTE: add this)

11

Chapter 4

Gerald

4.1 Purity and Chastity

Purity is defined as the ratio of the largest intensity to the sum of all intensities for this cycle/cluster.
Chastity is a similar metric, and is defined as the ratio of the largest intensity to the sum of the largest
and second largest intensities. As pointed out by Irina, the logic of this definition is somewhat faulty. If
the second highest intensity is negative (as it can be due to background compensation) it will contribute
to the sum incorrectly. To further complicate the situation Chastity is also sometimes used to mean a
limit for purity (for example in PhasingEstimate.cpp). E.g. Chastity of 0.6 means to not accept purity
above 0.6.

Purity and chastity are used as filters to identify mixed clusters, these are cluster which have grown
from more than one molecule.

12

Bibliography

[1] Lei Li and Terence Speed. An estimate of the crosstalk matrix in four-dye fluorescence-based DNA
sequencing. Electrophoresis, 20(7):1433–1442, 1998.

13

Appendix A

File Descriptions

A.1 Initial run folder

Before processing by the pipeline the run folder need only contain an Images directory and .params file.
The params file should have the same name as the run folder.

The Images directory contains a subdirectory for each lane in the format Lnnn where nnn is the lane
number. For example lane 1 would be L001. The lane directory contains a subdirectory for each cycle,
the Solexa run folder documentation states that this is in C<cycle number>.<version number> format,
version number is usually 1. Each cycle folder contains a set of tif images for the cycle in the format:
s <lane> <tile> <base>.tif (this differs from the Solexa documentation).

A.1.1 .params file

The .params file is in the root of the run folder and must have the same name as the run folder. It’s an
xml format file, and it’s general format can be seen in the following example:

<?xml version="1.0"?>

<experiment>

<run>

<instrument>IL2</instrument>

<cycleExposures />

</run>

</experiment>

Figure A.1 gives an overview of the initial run folder structure.

A.2 Pipefile files, before run

To run the pipeline, you first tell it to create a set of makefiles in the run folder. For our myfakerun folder
we might execute the following command to do this:

./GAPipeline-0.3.0b3/Goat/goat pipeline.py --cycles=1-36 myfakerun --make

This creates a Data directory and populates it with files, note you need to tell the pipeline how many
cycles ran. The Data directory contains a directory with a name similar to the following:

14

Figure A.1: Initial run folder structure, folders are represented by boxes, unboxed items are files.

C1-36 Firecrest1.9.2 07-01-2008 username

This is named after the cycle numbers, Firecrest version number (?), date and username of the user
who ran the software. A breakdown of this directory structure with additional directories highlighted is
shown in A.2.

A.3 Firecrest

After firecrest (the Solexa image analysis tool) has run a huge number of files are created, these are de-
scribed in figure A.3. From our perspective the most useful of these files are the s <lane> <tile> int.txt.gz

and s <lane> <tile> nse.txt.gz files created in the root Firecrest directory. These files contain intensity
and noise information associated with each cluster identified during image analysis.

A.4 Bustard

Bustard, the Solexa base caller, also creates a large number of files, from a user perspective the s <lane> <tile> seq.txt

in the Bustard directory are the most relevant. These files contain the final base calls. prb and qhg files
appear to contain information which is processed to create the final quality phred style quality score files
by Gerald (the Solexa reporting tool). Figure A.4 describes the files produced by Bustard during its run.

A.5 Gerald

In order to run Gerald, you need a Gerald configuration file. The format is quite straight forward and
is described in GERALD User Guide and FAQ.html in the Solexa pipeline documentation. An example,

15

Figure A.2: Run folder, after the pipeline has created it’s initial Makefiles. New folders are highlighted in
grey. Blue dots highlight files of unknown function.

16

Figure A.3: Run folder, after firecrest run. New files are highlighted in Olive. Blue dots indicate files of
unknown function.

17

Figure A.4: Run folder, after Bustard run. New files are highlighted in Olive. Blue dots indicate files of
unknown/unclear function.

18

simple configuration might be:

Auto-generated by; /nfs/team117/ts6/work/new-pipeline-dev/sanger-pipeline/trunk/bin/analyse_

At: 20071209-182436

Goat executable: /software/solexa/src/SolexaPipeline-0.3.0b2/Goat/goat_pipeline.py

Runfolders: /staging/IL2/analysis/071207_IL2_0147

EXPT_DIR .

EMAIL_SERVER mail.sanger.ac.uk

EMAIL_DOMAIN sanger.ac.uk

EMAIL_LIST nw3@sanger.ac.uk

WEB_DIR_ROOT http://sflogin.internal.sanger.ac.uk:9000/

ELAND_MULTIPLE_INSTANCES 8

SEQUENCE_FORMAT --fastq

QUALITY_FORMAT --symbolic

USE_BASES nY*n

GENOME_DIR /home/new/solexa/genomes

GENOME_FILE phi_plus_SNPs.fa

12345678:ANALYSIS eland_extended

12345678:ELAND_GENOME /home/new/solexa/genomes

Once you have a configuration file, you can ask Gerald to create a set of Makefiles with the following
command (one line):

./GAPipeline-0.3.0b3/Gerald/GERALD.pl ./myfake/gerald.config

--EXPT DIR ./myfake/Data/C1-36 Firecrest1.9.2 08-01-2008 username/Bustard1.9.2 08-01-2008 username --FORCE

This creates a directory with the name GERALD 08-01-2008 username (where 8-01-2008 is the current
date), under the Bustard1.9.2 08-01-2008 username directory. This contains a copy of the configuration
file originally provided (config.txt) and version of this file converted in to xml format (config.xml) and
a makefile. To run Gerald, simply run make. The htm files in this directory contain run reports, details of
error rates, signal intensities etc. The most useful files in this directory are the s <lane> sequence.txt

files. These contain final sequence and quality scores produced by Gerald. Many other text files are
created, files created by Gerald are summarised in figure A.5.

19

Figure A.5: Run folder, after Gerald run. New files are highlighted in Olive. Blue dots indicate files of
unknown/unclear function.

20

